From variable density sampling to continuous sampling using Markov chains
نویسندگان
چکیده
Since its discovery over the last decade, Compressed Sensing (CS) has been successfully applied to Magnetic Resonance Imaging (MRI). It has been shown to be a powerful way to reduce scanning time without sacrificing image quality. MR images are actually strongly compressible in a wavelet basis, the latter being largely incoherent with the k-space or spatial Fourier domain where acquisition is performed. Nevertheless, since its first application to MRI [1], the theoretical justification of actual k-space sampling strategies is questionable. Indeed, the vast majority of k-space sampling distributions have been heuristically designed (e.g., variable density) or driven by experimental feasibility considerations (e.g., random radial or spiral sampling to achieve smoothness k-space trajectory). In this paper, we try to reconcile very recent CS results with the MRI specificities (magnetic field gradients) by enforcing the measurements, i.e. samples of k-space, to fit continuous trajectories. To this end, we propose random walk continuous sampling based on Markov chains and we compare the reconstruction quality of this scheme to the stateof-the art.
منابع مشابه
Generalizing Elliptical Slice Sampling for Parallel MCMC
Probabilistic models are conceptually powerful tools for finding structure in data, but their practical effectiveness is often limited by our ability to perform inference in them. Exact inference is frequently intractable, so approximate inference is often performed using Markov chain Monte Carlo (MCMC). To achieve the best possible results from MCMC, we want to efficiently simulate many steps ...
متن کاملSlice Sampling
Markov chain sampling methods that automatically adapt to characteristics of the distribution being sampled can be constructed by exploiting the principle that one can sample from a distribution by sampling uniformly from the region under the plot of its density function. A Markov chain that converges to this uniform distribution can be constructed by alternating uniform sampling in the vertica...
متن کاملMarkov Chain Monte Carlo Methods Based On`slicing ' the Density Function
One way to sample from a distribution is to sample uniformly from the region under the plot of its density function. A Markov chain that converges to this uniform distribution can be constructed by alternating uniform sampling in the vertical direction with uniform sampling from the horizontaìslice' deened by the current vertical position. Variations on such`slice sampling' methods can easily b...
متن کاملFast MCMC sampling for Markov jump processes and extensions
Markov jump processes (or continuous-time Markov chains) are a simple and important class of continuous-time dynamical systems. In this paper, we tackle the problem of simulating from the posterior distribution over paths in these models, given partial and noisy observations. Our approach is an auxiliary variable Gibbs sampler, and is based on the idea of uniformization. This sets up a Markov c...
متن کاملEstimating standard errors for importance sampling estimators with multiple Markov chains
The naive importance sampling estimator based on the samples from a single importance density can be extremely numerically unstable. We consider multiple distributions importance sampling estimators where samples from more than one probability distributions are combined to consistently estimate means with respect to given target distributions. These generalized importance sampling estimators pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013